Jul 09

Space Rocket History #120 – Apollo: Stages S-IV and S-IVB

The key to high-energy stages was to use liquid hydrogen as the fuel.  Liquid hydrogen fuel appealed to rocket designers because of its high specific impulse, which is a basic measure of rocket performance. Specific Impulse is the impulse delivered per unit of propellant consumed.  You might think of it as the efficiency of the rocket.  Compared to an RP-1 (kerosene) fueled engine of similar size, liquid hydrogen fuel could increase the specific impulse or efficiency of an engine by 40 percent.  The combination of hydrogen and oxygen for propellants made the moon shot feasible.

S-IV Rocket Stage

S-IV Rocket Stage

S-IV & S-IVB Stage Position

S-IV & S-IVB Stage Position

S-IV Stage in Saturn IB and V

S-IV Stage in Saturn IB and V

S-IVB Differences Between Saturn IB and V

S-IVB Differences Between Saturn IB and V

Jul 02

Space Rocket History #119 – Apollo: Lunar Module Design – Part 3

At various stages of lunar module design, mockup reviews were conducted to demonstrate progress and identify weaknesses. These inspections were formal occasions, with a board composed of NASA and contractor officials and presided over by a chairman from the Apollo office in Houston.

Rendezvous Radar Antenna

Rendezvous Radar Antenna

TM-1 Mockup of the LEM

TM-1 Mockup of the LEM

Lunar Module in the Stack

Lunar Module in the Stack

Panel Separation by Explosive Charge

Panel Separation by Explosive Charge

Removing the LEM

Removing the LEM

Jun 17

Space Rocket History #118 – Apollo: Lunar Module Design – Part 2

The Lunar Lander originally had two docking hatches, one at the top center of the cabin and another in the forward position, or nose, of the vehicle, with a tunnel in each location to permit astronauts to crawl from one pressurized vehicle to the other…

A rope instead of a ladder?

A rope instead of a ladder?

Ladder works better than a rope.

Ladder works better than a rope.

Improved Lunar Module

Improved Lunar Module

Jun 11

Space Rocket History #117 – Apollo: Lunar Module Design

Since the lunar module would fly only in space (earth orbit and lunar vicinity), the designers could ignore the aerodynamic streamlining demanded by earth’s atmosphere and build the first true manned spacecraft, designed solely for operating in the spatial vacuum.

Lunar module generations from 1962 to 1969

Lunar module generations from 1962 to 1969

James Webb examines models of the LEM and CM

James Webb examines models of the LEM and CM

Underside of LEM descent stage shows fuel tank installation

Underside of LEM descent stage shows fuel tank installation

LEM Descent Stage

LEM Descent Stage

Mockup of LEM cabin with seats

Mockup of LEM cabin with seats

1964 Version of LEM, No Seats and Triangular windows

1964 Version of LEM, No Seats and Triangular windows

LEM Sleep Stations

LEM Sleep Stations

May 21

Space Rocket History #114 – Apollo: Command Module Design and Development 1963-1964 Part 2

Max Faget’s position was that considering the difficulty of the job,  if each mission was successful half the time, it would be well worth the effort.  But Gilruth thought that was too low.  He want a 90% mission success ratio and a 99% ratio for Astronaut safety.  Walt Williams who was currently running the Mercury program believed that astronaut safety needed to be limited to only 1 failure in a million which was 99.9999%.

Launch Escape Vehicle Configuration

Launch Escape Vehicle Configuration

Jettison of the Launch Escape System after a Successful Launch

Jettison of the Launch Escape System after a Successful Launch

Full-Scale Mockup of the Service Module with Panels Off

Full-Scale Mockup of the Service Module with Panels Off

The CM Probe Slips into the LM's Dish-shaped Drogue, and 12 latches on the Docking Ring Engage, to Lock the Spacecraft Together, Airtight

The CM Probe Slips into the LM’s Dish-shaped Drogue, and 12 latches on the Docking Ring Engage

The Cabin Section of the Command Module being Assembled at North American Aviation

The Cabin Section of the Command Module being Assembled at North American Aviation

Command Module Elbow & Shoulder Clearance Problem

Command Module Elbow & Shoulder Clearance Problem

May 14

Space Rocket History #113 – Apollo: Command Module Design and Development 1963-1964

…From the information they gathered on the existing technical problems, Disher and Tischler concluded that prospects were only one in ten that Apollo would land on the moon before the end of the decade….

The "big dish" at Canberra Australia

The “big dish” at Canberra Australia

11/16/63 Blkhouse 37, NASA new Manned Space Flight chief George Mueller briefed. JFK there 6 days before his death

11/16/63 Blkhouse 37, NASA new Manned Space Flight chief George Mueller briefed. JFK there 6 days before his death

Removing LM from S=IVB stage

Removing LM from S=IVB stage

May 07

Space Rocket History #112 – Apollo: Headquarters

“The contractor role in Houston was not very firm. Frankly, they didn’t want us. There were two things against us down there. Number one, it was a Headquarters contract, and it was decreed that the Space Centers shall use GE for certain things; and number two they considered us (meaning GE) to be  Headquarters spies.”  Edward S. Miller of General Electric.

GE Employees Monitor Activities of a Spacecraft Test

GE Employees Monitor Activities of a Spacecraft Test

Comparison of Spacecraft and Launch Vehicles Configurations

Comparison of Spacecraft and Launch Vehicles Configurations

Apollo Tracking Network

Apollo Tracking Network

Apr 30

Space Rocket History #111 – Apollo: Early Lunar Module Design and Saturn SA-3”

During 1962, NASA faced three major tasks: first the mode selection and its defense (covered in episodes 106-109), second keeping North American moving on the command and service modules (covered in episode 110) and third finding a contractor to develop the separate landing vehicle required by that approach.  Which we will cover today in episode 111.

One-eighth scale Lunar Module shown by Grumman

One-eighth scale Lunar Module shown by Grumman

Bell Aerospace Lunar Landing Research Vehicle

Bell Aerospace Lunar Landing Research Vehicle

Saturn SA-3 Launch

Saturn SA-3 Launch