Feb 04

Space Rocket History #147 – Saturn: S-II Stage Part 2: Trials and Tribulations

“The S-II stage was a nightmare the minute it was conceived, and it only got worse from there. During the course of its creation, it would grind up people and careers the way the transcontinental railway devoured laborers.  Though the methods and materials used to build the S-II were reasonably well known, nobody had ever tried to apply them on such a titanic scale.  Originally, it was to be somewhere around 8 stores tall with a diameter of 22 feet, but the width ballooned from there to 27 feet before the contract was  even signed, then to 30, and finally to 33 feet.  And all the while as the size of thing increased, NASA was trimming the allowable weight.”  Harrison Storms of NAA.

Test firing of S-II Stage in Mississippi

Test firing of S-II Stage in Mississippi

Saturn V S-II Second Stage

Saturn V S-II Second Stage

Saturn S-II Assembly Building at Seal Beach.

Saturn S-II Assembly Bldg at Seal Beach.

S-II during stacking operations in the VAB

S-II during stacking operations in the VAB

S-II Inboard Profile in 1963

S-II Inboard Profile in 1963

S-II Cut-away with callouts

S-II Cut-away with callouts

Aug 20

Space Rocket History #126 – Apollo-Saturn IB: AS-201, AS-202, and AS-203

Apollo Saturn 201 employed the Saturn IB launch vehicle, which  was the up-rated version of the Saturn I rocket flown in ten earlier Saturn-Apollo missions. It featured an upgrade of the first stage engines to increase thrust from 1,500,000 lb-ft of thrust to 1,600,000 lb-ft. The second stage was the S-IVB.  This stage used a new liquid hydrogen-burning J-2 engine which would also be used on the S-II second stage of the Saturn V lunar launch vehicle…

AS-201 Recovery

AS-201 Recovery

Apollo-Saturn 201 Launch

Apollo-Saturn 201 Launch

AS-202 Launch

AS-202 Launch

AS-203 Launch

AS-203 Launch

Jul 23

Space Rocket History #122 – Apollo: Serious Problems with the Lunar Module and Grumman

Toward the end of January 1967, it was revealed that Lunar Module 1 would not reach the Cape in February, as expected. This meant, the moon landing might be delayed because the lander was not ready. But the mission planners could not wait for the Apollo engineers to iron out all the problems. They had to plan for a landing in 1969 and hope that the hardware would catch up with them.

Lunar Module Diagram

Lunar Module Diagram

John Disher Explains the Components of the Apollo Program

John Disher Explains Apollo Components

Lunar Module Test Article LTA-2R

Lunar Module Test Article LTA-2R

Jul 16

Space Rocket History #121 – Pegasus Wings inside SA-8 (AS-104), SA-9 (AS-103), & SA-10 (AS-105) and a Command Module update for 1965

The Pegasus satellite was named for the winged horse of Greek mythology.  Like its namesake, the Pegasus was notable for its “wings”, a pair of 29 meter long, 4.3 meter wide arrays of 104 panels fitted with sensors to detect punctures by micrometeoroids at high altitudes.  In its stored position with panels folded inside the Apollo service module, the Pegasus was 5.3-meters high, 2.1 meters wide, and 28-cm deep.

Pegasus Stowed Inside the Boilerplate Service Module

Pegasus Stowed Inside the Boilerplate Service Module

Pegasus Micrometeoroid Detection Satellite Deployed

Pegasus Micrometeoroid Detection Satellite Deployed

Pegasus Deployment Sequence

Pegasus Deployment Sequence

SA-9 Launch

SA-9 Launch

SA-8 Launch

SA-8 Launch

SA-10 Launch

SA-10 Launch

Interior of Command Module

Interior of Command Module

Jul 09

Space Rocket History #120 – Apollo: Stages S-IV and S-IVB

The key to high-energy stages was to use liquid hydrogen as the fuel.  Liquid hydrogen fuel appealed to rocket designers because of its high specific impulse, which is a basic measure of rocket performance. Specific Impulse is the impulse delivered per unit of propellant consumed.  You might think of it as the efficiency of the rocket.  Compared to an RP-1 (kerosene) fueled engine of similar size, liquid hydrogen fuel could increase the specific impulse or efficiency of an engine by 40 percent.  The combination of hydrogen and oxygen for propellants made the moon shot feasible.

S-IV Rocket Stage

S-IV Rocket Stage

S-IV & S-IVB Stage Position

S-IV & S-IVB Stage Position

S-IV Stage in Saturn IB and V

S-IV Stage in Saturn IB and V

S-IVB Differences Between Saturn IB and V

S-IVB Differences Between Saturn IB and V

Jul 02

Space Rocket History #119 – Apollo: Lunar Module Design – Part 3

At various stages of lunar module design, mockup reviews were conducted to demonstrate progress and identify weaknesses. These inspections were formal occasions, with a board composed of NASA and contractor officials and presided over by a chairman from the Apollo office in Houston.

Rendezvous Radar Antenna

Rendezvous Radar Antenna

TM-1 Mockup of the LEM

TM-1 Mockup of the LEM

Lunar Module in the Stack

Lunar Module in the Stack

Panel Separation by Explosive Charge

Panel Separation by Explosive Charge

Removing the LEM

Removing the LEM

Jun 17

Space Rocket History #118 – Apollo: Lunar Module Design – Part 2

The Lunar Lander originally had two docking hatches, one at the top center of the cabin and another in the forward position, or nose, of the vehicle, with a tunnel in each location to permit astronauts to crawl from one pressurized vehicle to the other…

A rope instead of a ladder?

A rope instead of a ladder?

Ladder works better than a rope.

Ladder works better than a rope.

Improved Lunar Module

Improved Lunar Module

Jun 11

Space Rocket History #117 – Apollo: Lunar Module Design

Since the lunar module would fly only in space (earth orbit and lunar vicinity), the designers could ignore the aerodynamic streamlining demanded by earth’s atmosphere and build the first true manned spacecraft, designed solely for operating in the spatial vacuum.

Lunar module generations from 1962 to 1969

Lunar module generations from 1962 to 1969

James Webb examines models of the LEM and CM

James Webb examines models of the LEM and CM

Underside of LEM descent stage shows fuel tank installation

Underside of LEM descent stage shows fuel tank installation

LEM Descent Stage

LEM Descent Stage

Mockup of LEM cabin with seats

Mockup of LEM cabin with seats

1964 Version of LEM, No Seats and Triangular windows

1964 Version of LEM, No Seats and Triangular windows

LEM Sleep Stations

LEM Sleep Stations